Using measures of similarity and inclusion for multiple classifier fusion by decision templates
نویسنده
چکیده
Decision templates (DT) are a technique for classifier fusion for continuous-valued individual classifier outputs. The individual outputs considered here sum up to the same value (e.g., statistical classifiers, yielding some estimates of the posterior probabilities for the classes). First, the DT fusion algorithm is explained. Second, we show that two similarity measures (S1 and S2) and two inclusion indices (I1 and I2) between fuzzy sets (see Dubois and Prade, 1980) produce the same DT classifier. The equivalence is proven by showing that for every object submitted for classification, all 4 measures induce the same ordering on the set of class labels (through DT fusion), thereby assigning the object to the same class.
منابع مشابه
Decision templates for multiple classifier fusion: an experimental comparison
Multiple classifier fusion may generate more accurate classification than each of the constituent classifiers. Fusion is often based on fixed combination rules like the product and average. Only under strict probabilistic conditions can these rules be justified. We present here a simple rule for adapting the class combiner to the application. c decision templates (one per class) are estimated w...
متن کاملUncertainty Measurement for Ultrasonic Sensor Fusion Using Generalized Aggregated Uncertainty Measure 1
In this paper, target differentiation based on pattern of data which are obtained by a set of two ultrasonic sensors is considered. A neural network based target classifier is applied to these data to categorize the data of each sensor. Then the results are fused together by Dempster–Shafer theory (DST) and Dezert–Smarandache theory (DSmT) to make final decision. The Generalized Aggregated Unce...
متن کاملHand Written Digit Recognition by Multiple Classifier Fusion based on Decision Templates Approach
Classifier fusion may generate more accurate classification than each of the basic classifiers. Fusion is often based on fixed combination rules like the product, average etc. This paper presents decision templates as classifier fusion method for the recognition of the handwritten English and Farsi numerals (1-9). The process involves extracting a feature vector on well-known image databases. T...
متن کاملMultiple Classifier Fusion Using k -Nearest Localized Templates
This paper presents a method for combining classifiers that uses knearest localized templates. The localized templates are estimated from a training set using C-means clustering algorithm, and matched to the decision profile of a new incoming sample by a similarity measure. The sample is assigned to the class which is most frequently represented among the k most similar templates. The appropria...
متن کاملAutomated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images
ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 122 شماره
صفحات -
تاریخ انتشار 2001